An Optimal a Posteriori Error Estimates of the Local Discontinuous Galerkin Method for the Second-order Wave Equation in One Space Dimension

نویسنده

  • MAHBOUB BACCOUCH
چکیده

Abstract. In this paper, we provide the optimal convergence rate of a posteriori error estimates for the local discontinuous Galerkin (LDG) method for the second-order wave equation in one space dimension. One of the key ingredients in our analysis is the recent optimal superconvergence result in [W. Cao, D. Li and Z. Zhang, Commun. Comput. Phys. 21 (1) (2017) 211-236]. We first prove that the LDG solution and its spatial derivative, respectively, converge in the L-norm to (p + 1)-degree right and left Radau interpolating polynomials under mesh refinement. The order of convergence is proved to be p + 2, when piecewise polynomials of degree at most p are used. We use these results to show that the leading error terms on each element for the solution and its derivative are proportional to (p + 1)-degree right and left Radau polynomials. These new results enable us to construct residual-based a posteriori error estimates of the spatial errors. We further prove that, for smooth solutions, these a posteriori LDG error estimates converge, at a fixed time, to the true spatial errors in the L-norm at O(h) rate. Finally, we show that the global effectivity indices in the L-norm converge to unity at O(h) rate. The current results improve upon our previously published work in which the order of convergence for the a posteriori error estimates and the global effectivity index are proved to be p+3/2 and 1/2, respectively. Our proofs are valid for arbitrary regular meshes using P p polynomials with p ≥ 1. Several numerical experiments are performed to validate the theoretical results.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A posteriori $ L^2(L^2)$-error estimates with the new version of streamline diffusion method for the wave equation

In this article, we study the new streamline diffusion finite element for treating the linear second order hyperbolic initial-boundary value problem. We prove a posteriori $ L^2(L^2)$ and error estimates for this method under minimal regularity hypothesis. Test problem of an application of the wave equation in the laser is presented to verify the efficiency and accuracy of the method.

متن کامل

Equivalent a posteriori error estimates for spectral element solutions of constrained optimal control problem in one dimension

‎In this paper‎, ‎we study spectral element approximation for a constrained‎ ‎optimal control problem in one dimension‎. ‎The equivalent a posteriori error estimators are derived for‎ ‎the control‎, ‎the state and the adjoint state approximation‎. ‎Such estimators can be used to‎ ‎construct adaptive spectral elements for the control problems.

متن کامل

Optimal a Posteriori Error Estimates of the Local Discontinuous Galerkin Method for Convection- Diffusion Problems in One Space Dimension

In this paper, we derive optimal order a posteriori error estimates for the local discontinuous Galerkin (LDG) method for linear convection-diffusion problems in one space dimension. One of the key ingredients in our analysis is the recent optimal superconvergence result in [Y. Yang and C.-W. Shu, J. Comp. Math., 33 (2015), pp. 323-340]. We first prove that the LDG solution and its spatial deri...

متن کامل

Asymptotically exact local discontinuous Galerkin error estimates for the linearized Korteweg-de Vries equation in one space dimension

Abstract. We present and analyze a posteriori error estimates for the local discontinuous Galerkin (LDG) method for the linearized Korteweg-de Vries (KdV) equation in one space dimension. These estimates are computationally simple and are obtained by solving a local steady problem with no boundary condition on each element. We extend the work of Hufford and Xing [J. Comput. Appl. Math., 255 (20...

متن کامل

Local error analysis of the interior penalty discontinuous Galerkin method for second order elliptic problems

A local a priori and a posteriori analysis is developed for the Galerkin method with discontinuous finite elements for solving stationary diffusion problems. The main results are an optimal-order estimate for the point-wise error and a corresponding a posteriori error bound. The proofs are based on weighted -norm error estimates for discrete Green functions as already known for the ‘continuous’...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017